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A pseudoscalar operator approach to the TO T~ Jahn-Teller 
system 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 8 June 1988 

Abstract. We describe the linear T @ T ~  Jahn-Teller interaction as a pseudoscalar operator 
in electron-phonon space. In this form it is found to mix states within an invariant minimal 
subspace for which we give basis vectors in an analytic form for arbitrary phonon numbers. 
These vibronic states are labelled by spherical symmetry quantum numbers and possess 
definite cubic symmetry at the same time. It is shown how to extend the method to the 
case when the Jahn-Teller interaction competes with spin-orbit coupling. 

1. Introduction 

The problem of linear Jahn-Teller (JT) coupling of a degenerate electronic triplet to 
lattice modes has been much studied in past decades. In a cubic environment, a simple 
solution can be found only when the electronic triplet is coupled solely to the E modes 
of vibration because E operators in the triplet basis commute. In contrast to this, for 
JT coupling involving r2 excitations of the ligands, the so-called TO T~ and TO ( E 0 T ~ )  

JT problems, the vibronic interaction mixes electronic and nuclear motions at all 
coupling strengths. There we can only expect analytic solutions for limiting cases, and 
these are now well known (Moffitt and Thorson 1957, O’Brien 1969, 1971). In the 
strong coupling limit, the adiabatic approach has been fruitful, whereas weak coupling 
is treated by QM perturbation theory. 

However, in many situations one is concerned with vibronic behaviour at intermedi- 
ate coupling strengths. For these the JT Hamiltonian is usually diagonalised in a 
convenient set of basis states. The principal hazards here are the size of the matrix 
and the difficulty of getting general expressions for the matrix elements. Caner and 
Englman (1966) used symmetry-adapted vibrational eigenstates including up to 12 
phonon excitations. Their method involved using phonon states tabulated explicitly 
for each phonon excitation number, and hence was not readily extendible to higher 
coupling strengths. Later, Sakamoto and Muramatsu (1978) used eigenstates in a 
general form, which was simply a direct product basis of electronic and quantum 
oscillator states, in which case a large number of basis states is required for matrix 
diagonalisation and these states are not symmetry adapted. 

In this paper, we shall address ourselves to constructing a complete set of symmetry- 
adapted vibronic basis states for  TOT^ JT coupling. We shall find a general expression 
for these coupled states which allows the inclusion of states with an arbitrary number 
of phonons. Our method uses angular momentum theory and spherical tensor tech- 
niques to represent the action of the linear JT interaction as a pseudoscalar vibronic 
operator. In this way we shall classify vibronic basis states of definite cubic symmetry 
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using the irreducible representations (irreps) of SO(3) and SO(2) as labels. This method 
is aimed at calculating features such as optical absorption bandshapes for which many 
excited states of the Jahn-Teller system must be known. It is not particularly aimed 
at producing good ground states and reduction factors, and so it should be regarded 
as complementary to and not competitive with the various transformation methods. 

2. The TOT* tensor Hamiltonian 

We begin by writing the linear TOT* JT Hamiltonian as a matrix operator inside the 
electronic triplet manifold with two terms as 

H = Ho+ Vj, 
where 

where p7 and w, are the effective mass and frequency of the r2 oscillator given by the 
normal coordinates for ligand motion QvZ, Qxz; Ox,; the linear coupling constant is l,, 
related to the k of Englman and Caner'(1970) and the L, of Englman (1972) by 

l , = - k =  L,/J6 
and it is identical to the VT in O'Brien (1969) and Judd (1974) and FT in Bersuker (1984). 

The trick that turns V,, into a form in which angular momentum coupling theory 
can be used is to write it in the following form: 

VJT=L[{L?, L}Q,=+{L,  L=)Qx,+{L.Y, &)Qx~~l  (2) 

[.Li, Lj] = i&,kLk { L,, L,} = LiLj + L,Li = n, i # j  (3) 

where the orbital operators L obey 

and we represent the L, by the matrices in an L =  1 basis: 
0 0  0 O O i  0 -i 0 

L,= [o 0 0 -i o )  
L?=[:i : :) Lz=[ ;  ; :). 

Hence we regain the interaction as a scalar product with respect to the cubic group: 

We know that we can easily transform L operators, as well as Q operators, into 
rank-1 spherical tensors which act, respectively, in the three-dimensional electronic 
manifold and the infinite-dimensional harmonic oscillator/phonon space. We express 
V,, as a product of these tensor operators, the product to be built up according to the 
usual rule (see Rotenberg er a1 (1959), which is the convention we adopt throughout 
this paper). Using the spherical components of L: 

we define the second-rank tensor T"' by 

VjT = 1,n * Q. 

Lb" = L, L Y : = F ( L , ~ ~ L , ) / J ~  
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where we have absorbed the coupling constant 1, into T"'. Defining the spherical 
tensor Q'" in an identical fashion to L'", we now construct the third-rank tensor V ' 3 ) :  

The JT interaction is represented in this third-rank tensor by the components 

No other components of V ( 3 )  contain terms of the form n,Q, (where y = xz, yz, xy ) .  
Thus we have 

Vl'l= ~7 [ (L f ; -L~ )Qxy+~xzQyz  -flyrQxz *i(fl,zQyz+flxzQxz +Rx,Qxy)1/2J3. (5) 

v,, = i f i (  vi3) - Pi) = vi:'. ( 6 )  
The properties of the { L , }  and the fact that R and Q are real symmetric show that 
Vs',' is Hermitian, as required. 

3. The symmetry of VyJ 

In later sections we shall exploit the form of the tensor Vi:! given in (6) to find a 
subspace for each (3(n + l ) ( n  +2)/2)-dimensional product space {i[n], 1, m,; p ) }  (where 
p = x, y ,  z, 1 = n, n - 2 , .  . . , n mod 2, Im,l G I, n fixed). Here the state I[n], 1, m,; p )  
represents the simple product of the three-dimensional oscillator state I[ n], I, m,) with 
the electronic TI  state Ip ) .  The oscillator state is labelled, in the usual manner, using 
the irreps of the group chain U(3) 3 SO(3) 2 SO(2). We shall adopt two modes of 
attack: first we shall consider the spherical properties of Vi$); then we shall investigate 
the transformation properties of Vi:! under the cubic group. Since the combination 
Y:  - Y3, of spherical harmonics behaves like the Cartesian product xyz, Vi': transforms 
as the pseudoscalar irrep A2 of 0, the octahedral group. 

The origin of this property can be followed through the coupling scheme. We 
began with a scalar interaction for  TOT^: 

vm=c W:Q; (7 )  
Y 

where the electronic operators R, as well as the phonon operators Q, transformed like 
7,. The product in (7) refers to the cubic group and transforms like the irrep A , .  We 
have altered this, however, by representing Q by the rank-1 spherical tensor Q'",  
which transforms like D ( ' )  under SO(3) and hence like T~ under 0. R, on the other 
hand, was represented by T'" and, as a second-rank tensor, transforms like D ( 2 ) ,  which 
contains the irrep 7,. From the product 

T> 0 T~ = A2 0 E 0 TI 0 T, 
we recognise that we can extract the component A ,  but not A ,  from our construction 

We are interested in those states which mix with the vibronic triplet ground state 
via the Jahn-Teller interaction. For an electronic P state (TI)  the vibronic ground 
state associated with ( n  = 0) is a TI  triplet. Hence we must look at all the TI  terms 
which emerge from the multiplets {[rill, P ; j ,  m }  for a given n. However, the pseudo- 
scalar V:;) acts on a TI state to produce a T2 state and vice versa so it looks as though 
TI and T2 states must be involved. The key to this apparent inconsistency lies with 
the fact that the octahedral group is being used as an abstract group to classify the 
transformation properties of Vj': and the states among which it acts. 

of V g ! .  
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Phonon states ( T ~  excitations) with quantum number n, 1 (where 1 = n, n - 
2 , .  , . , n mod 2) transform like D(”; so for n = I = 1 we obtain D(’) which reduces to 
T ~ ,  not under 0. Thus, after coupling to the P electron, the labelling of the phonons 
by SO(3) causes an interchange of those irrep indices contained in [ n  = 11. (Compare 
~ 1 0 T l = A l ~ E ~ T l ~ T 2  to 7 2 0 T 1 = A Z 0 E 0 T 2 0 T 1 . )  Accordingly, for n = l ,  the 
abstract T2 term plays the role of the physical TI term, and we need the pseudoscalar 
property of Vi:’ to couple the n = 0, Tl term to the (physical) TI term of n = 1. For 
odd n, consistency thus forces T2 states to play the role of physical TI  states (figure 1 
generalises this point in a schematic form). 

To show that this is indeed the case, we must compare the representation [ T;] 0 TI 
with [ 7;] 0 Tl for a system of n phonons coupled to a p electron. Here [ T : ]  denotes 
the symmetrised direct product of n phonon irreps T ~ .  A group theoretical analysis 
shows that for n even: 

[7;]0T1=[7;]0T1 

but for n odd: 
[ 72” ] 0 Tl = N I  TI 0 N2 T2 0 N3 E 0 N4A 0 N5A2 

[ 7 ; ] 0 Ti = N2 T1 0 NI 7’2 0 N3 E 0 N5A 1 0 N4A2. 

A detailed proof of these relations is reserved for appendix 1. 

4. An invariant subspace of states for V$? 

We now couple the phonon momentum I to the p electron to give the total 
pseudomomentumj with the SO(2) label m. We denote the states by I([n], 1)P; j ,  m ) d ,  

where the additional label d distinguishes states symmetric (s) or antisymmetric (a) 
under m -$ -m;  it is not an independent variable but depends uniquely on j ,  as we 
shall see. Considering the cubic properties of Vi;), we know that, as a pseudoscalar 
operator, it maps the ith component of a Tl-generating basis onto the ith component 
of a T,-generating basis when the bases are chosen appropriately, i = 1 ,2 ,3 .  Thus it 
is possible to work in that subspace of states obtained by considering, for instance, 
the i = 3 components of each Tl ( T,) irrep produced in the reduction of D(-” under 
cubic symmetry, for n even (odd). 

The next question is whether the cubic symmetry states in this subspace will still 
have a simple form with the above choice of spherical quantum numbers. 

The selection rules for V$.C Vi3) - Vi‘: are \An1 = 1, IAZI = 1 and lAjl S 3 as can be 
seen by the way it is constructed. Considering its action on the ket I([O], 0 ) P ;  1,O) we 
observe that the only resulting bra which is not orthogonal to Vl’,’l([O], 0 ) P ;  1,O) is 

In what follows we set out to systematise these selection properties. It turns out 

(9) 

(10) 

(([I], 1 ) P ;  2 ,2 /+( ( [11 ,1)P;  2, -21. 

that an invariant subspace with respect to Vi:’ is spanned exclusively by the states 

I([nIl)P;j ,  m)d = ( l /N l ) ( l ( [n IOp; j ,  m ) + ( - l ) ’ + ’ I ( [ n I ~ ) ~ ; j ,  -m) )  

N 1 -  - (-i)unnj 2( 1 + &n,o) 

if we start with I([O], 0 ) P ;  1,O). Here the normalisation is 

and we define throughout this paper 
n = I n n M  mod M e [ n I M  = M ( n / M - [ n / M ] )  
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where [x] = max{N: N G x} is Gauss’ bracket function. We shall omit the index M 
in InnM in case M = 2. We omit n, 1, p in the kets whenever they are determined by 
context or are left arbitrary in their effect. N1 attaches a phase ( + i )  to all kets with 
odd n, for consistency at a later stage. This freedom stems from applying Schur’s 
lemma to the group U(3) (see, for example, Butler 1981). N ,  ensures that 
d( j fmfl j ,  mjd = 6j&,tm and that ( j ,  0)d = Ij, 0). (We shall have m = 0 states only for even 

Thus in (9) symmetric states occur for odd j and antisymmetric states for j even. 
Acting with Vjt’ on a state Ij, m)+ Ij, - m )  produces a superposition of states Ij’, m ’ ) +  
(-l)”’G’’lj‘, -m’) with I j - j ’ l 63  and some function w ( j ’ ) .  This shows that we are 
indeed operating in an invariant subspace under Vj;). We cast this into a more 
symmetric form and apply the Wigner-Eckhart theorem for SO(3) to obtain 

( ( j ’ ,  m’I+(-l)J’+’(j’, - m ’ / ) ( ~ y ) -  ~ ? i ) ( l j ,  m)* (--~)~+‘lj ,  - m ) )  

n. 1 

for ‘+’ 

for ‘-’ 

Here A denotes the reduced matrix element of the interaction tensor. 

to consider for a fixed j .  If we start with I1,O) and use 
With this knowledge about Vj;’ we are led to ask how many states Ij, m)d we need 

) m ’ l = l m i 2 1  (12) 

we obtain a ‘cone’ of states which can be connected via Vj t ) ,  as in figure 2. 

The property (12) is encoded in figure 2 by requiring 
Because of the combination states (9) we need only consider the m 2 0 half-cone. 

“(31 

{a, s} - { A ,  S } .  

An expression for the number a ”  of Ij, m)d states for fixed j is 

a”) = ( [ { j ]  + 1)  - (1 - [ j ] ) .  (13) 

We observe that, for large j ,  a”’= 0[$(2j+ l)]. 
It is important now to note that Vi”: maps between states of two kinds: 

n even t) n odd 

TI - T2 

[imj4 = Oe[[m],= 2. 

This leads to the hypothesis: 

lj ,  m)d is a T,  ~ t a t e e $ m ] ~ = O  

Ij, m)d is a T2 s t a t e e [ m J 4  = 2 

and allows us to use only states of either TI or T2 property for each n. In appendix 
2 we give a direct proof for (15) by investigating the transformation properties of 
spherical harmonics under the cubic group 0. 
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m 
2 

0 

- 2  

A’S - A 

- - - - -  a / a  5 a 

5 5 
2 3 4 5 b 

\ 
Figure 2. Allowed vibronic states l ( [ n ] ,  /)P; j, m),  for n, I fixed; d = a, s. 

For the number of 

a c i ) - - l  1 

states we Iconsider, for a fixed value of j ,  we can.extend 
(13) as follows ( j =  [ j n N  mod N ) :  

rI -d[~jl+ 1 + ( I  - [ f [ I j ~ i ) )  - ( I  -[Ij12) 

r2 - d & j I  + 1 - (1 - [fUjI4i)). 
(16) 

Since we always pick out the same partner of the T,(,)-generating basis triplet, i.e. one 

- 1 

Table 1. 

n = O  1=0 j = l  
n = l  / = 1  j = 2  
n = 2  / = 2  j = 3  

j = l  
1=0 j = l  

n = 3  I = 3  j = 4  
j = 3  
j = 2  

I = 1  j = 2  
n = 4  I = 4  j = 5  

j = 4  
j = 3  

/ = 2  j = 3  
j= 1 

1=0 j = l  
n = 5  I = 5  j = 6  

j = 5  
j=4 

/ = 3  j = 4  
j = 3  
j = 2  

I = 1  j = 2  
n = 6  / = 6  j = 7  

4 

8 
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state per irrep, these numbers a$’ should equal the multiplicity of TI(,, in the reduction 
of the irrep Db’ of SO(3) under 0. 

For these multiplicities b$:,2 we give closed formulae: 
bo) - ’  r, - , { 2 j +  l-3(-l)J+2(-l)ub’2’n2} 
b(J)-’ (17)  

r2 - *{2j  + 1 + (- 1 )’ - 2(- 1 )u~/21J2}. 

It is possible to show that indeed 
a b )  - b o )  

7-l ,2  - Ti$ 

Thus, to summarise, we have shown that we obtain an invariant subset of states with 
respect to Vi:’ by using the basis (whose low states are listed in table 1) 

with the following ranges for the quantum numbers: 

n E N o  1 =  n, n -2 , .  . . ,I[nDz 

j = { ; + l , l , l - l  I Z O  
1=0 

m E {mlumIt4 = 2 [ n ] , ,  0s m zs j } .  

5. Inclusion of electronic spin-orbit interaction 

Many physical systems show a behaviour which indicates that the spin-orbit interaction 
may be comparable in magnitude to the Jahn-Teller interaction. We allow for this by 
introducing a further term V,, in the linear interaction Hamiltonian: 

( 1 9 )  
which acts in the electronic part of the system. Here A is the spin-orbit coupling 
constant, the scalar product refers to the electronic space, and the fact that the 
Jahn-Teller and spin-orbit couplings are of comparable magnitude prevents us from 
treating them hierarchically. We still regard the cubic crystal field dominating over 
V,, and V,, so as to enable us to classify the states according to the octahedral group 
0. Treating both interactions simultaneously allows us to consider the action of V,, 
inside the electronic triplet P( TI) as before. Two schemes exist to couple L and 1, the 
orbital and vibrational angular momenta, to the spin S, to yield the resulting 
pseudoangular momentum labels A, p. We depict these coupling schemes in figure 3. 

The challenge, now, is to find a subset of the set of all possible wavefunctions 
{ l ( [ n ] l ) ,  ( P S ) J ;  A, p ) }  which is small and invariant with respect to both operators, V!;) 
and VLS. We want to extend the method developed in 0 4 for this purpose. There we 
succeeded by considering only the third component of each basis triplet which generates 
the vibronic T, or T2 irrep. Incorporating spin leads to the use of the double octahedral 
group irreps rs, r,, rs. The spin eigenfunctions Is=;, T) and Is=f, &) generate r6.  
Physically, the process of interest could be an optical absorption from a ground-state 
doublet, r6 = A ,  @ r 6 ,  by a dipole operator d, transforming like D(’)+ TI.  Thus only 
the final states 0fr6 and rs give rise to a non-zero contribution. In short (r6,*ld T l l ~ 6 )  z 0. 

Recalling L * S = L,S, + ;( L’S- + L-S+), where L* = L, f i Ly = d 2  Li‘/ and L, = 
LY) (similarly for S ) ,  we note that L enters V,, as a rank-1 tensor, whereas it entered 

(2 )  (3 )  VJT+ VLS 5 (QriononTorbit) @ I s p i n +  lphonon@A(Lb%t s & \ n )  
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1 Phonon 1 

‘ ’ i E‘ectron I 
Figure 3. Alternative couplihg schemes for system with competing Jahn-Teller and spin- 
orbit interactions. 

V$? as a rank-2 tensor (T‘”) .  This suggests that the convenient properties of the 
symmetry-adapted Ij, ( T1,2) i=3)  states under ( Q(1)T(2))(3) will not be accompanied by 
simple behaviour of uncoupled simple product states like Ij, ( Tl,2)3)\S, T) under VLs. 
This leads us to concentrate on the spherical properties of the operators in order to 
find a fruitful way to define new states. 

We do not expect to obtain as simple a situation with respect to 0 as in the case 
without spin. Yet, the knowledge that a pseudoscalar operator couples the states 

r6 * r7 l-8 * rs (20) 

will prove to be helpful. We shall show that it is possible to find an invariant subspace 
of states {I([n]Z), J ;  A, p ) d }  with respect to both interactions, the states having a simple 
form similar to the Ij, m)d states used in $ 4. Moreover, they contain the electronic 
total momentum J and will thus diagonalise VLs. 

At first we shall proceed, however, by retaining the quantum number j as a label; 
not until later shall we return to construct the I ( [ n ] l ) ,  J ;  A, p )  states by recoupling. 
We consider the action of Vi’,’= ( VS3r)lspin)(3) when put between the coupled states 
I ([n]l)P,  j ,  S ;  A, p) ,  where 1 denotes the identity operator in the spin Hilbert space. 
With respect to A, p, Vi:’ has the same selection rules as it had before with respect to 
j ,  m. Let us define again a combination state l ( [n ]1 ,  P)j,  S ;  A, P ) ~ ,  for which d distin- 
guishes between a sum or a difference of [ A ,  p )  states and depends uniquely on A :  

N21A,  p . ) d  = IA, p ) + ( - l ) A - ’ l A ,  - p )  

N2 (- i)‘”’J2 

(we supressed the labels ( [ n l l ,  P ) j ,  S in the kets). 

((A’, p’l+ ( - l )A’ -4 (A’ ,  -p’l) Vy$(lA, p)*  (-l)”’lA, - p ) ) / i a  

The same argument as in the case without spin requires us to calculate 

l o  for ‘-’ 

where M is independent of p, p‘. Hence Vi”,! has the { I  . . ; A, P ) ~ }  space as an invariant 
subspace. The possible states in the A, p plane are twice as dense as in the non-spin 
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case since [ A ,  f ) d  now couples to / A ,  $ ) d .  (Every state [A,  p ) d  with positive p automati- 
cally represents the same state as IA, - p ) d . )  To reduce the number of basis states 
needed we exploit that Vi:! connects states with definite n and p :  

n :  even -f odd + even + odd + . . . 

[Ipl-i14:0,3+ 1 ,2  + 0,3  + 1 , 2 +  . . . .  
Vi;) (23) 

Hence, together with property (20) we deduce 

IA, p)d states with [lpl - i ] 4 = O ;  3, generate only r6, r8 
I A ,  p ) d  states with [IpI -+I4= 1; 2, generate only r7, r8. 

(24) 

This agrees with the table for low A of Lea et a1 (1962). The difference to the non-spin 
case is the fact that the states / A ,  p ) d  cannot be associated with a single basis function 
of either r6(7) or r8, but this last property is not necessary for our reduction method 
to work. 

To give an example, linear combinations of the two states IA, p)d = 14, $),, 12, - $ ) d  

constitute a basis for the irrep r7, but they also contribute to the basis functions of 
Ts. Thus, even by starting the scheme of states with the pure r6 state 
I([O]O), (PS);; 4, f ) s y m  which couples only to the r7 state in ( n  = l ) ,  we lose the informa- 
tion about the coefficients in the linear combination of the two above states constituting 
the r7 basis state. 

At this point we must use an additional argument to ensure the hermiticity of the 
interaction matrix at a later stage by maintaining the condition 

instead of 

IP‘I = IP * 21 
We can achieve that by replacing, for 21pI = 3,7,11,15,.  . . , i.e. IpI = (4k - 1)/2, k E N, 
the previously considered states IA, IFl)d by states with negative SO(2) label ( A ,  - 1 p I ) d .  

The coupling behaviour of the states among themselves is, of course, not affected by 
this rearrangement as long as we take one state [ A ,  pUjd per pair / A ,  ip). Finally, we 
write down the first elements of the complete set of states, which for the moment still 
contains the non-spin vibronic quantum number j (left half in table 2). The states we 
have set up so far are convenient for calculating matrix elements of Vi;)lspin. We 
mentioned that they do not yield the matrix elements of V,, in a simple way. 

It should be noted that our reduction method based on the states (21) (combinations 
in A, p )  is left unaffected when we recouple I((/, P)j ,  S)A, p)d into I([, (PS)J)A, p ) d  

states, since this procedure does not affect the labels A, p. 
Using the Wigner 6-j symbol (Rotenberg et a1 1959) the general formula becomes 

in our case 

for all possible A, p. The sum contains only two terms: j = A i f .  As long as we keep 
all states occurring on the right-hand side of equation (26) the resulting basis set is 
still invariant with respect to Vj:) as well as diagonal with respect to V r . .  
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3 1  2 2  
1 1  
I I  
5 5  
I I  

3 
2 

3 3  
I -3 
- 3 3  _- 
2 2  
7 7  
2 2  

I 
I 

5 1  
I I  
5 L  2 2  
3 1  
I I  
3 1  
I I  
1 1  
I f  
3 1  
T I  
1 1  
5 2  
9 5  
I I  

3 
-3 

7 5  
S I  

3 
2 

7 5  

3 

5 5  

3 

_- 

- __  

_- 

Z I  
-5 

Z I  
-5 

s i  2 2  
3 

-2 
- 3 3  __ 
I I  
2 2  
5 5  

3 
2 

3 3  
I -2 
3 3  
I -2 
I I  9 
2 2  

-_ 

- -  

Using explicit formulae for the 64 symbol we arrange ( 2 6 )  into 

where the (real) recoupling factors are defined by 

( I + A  + $ ) ( A  - I + + )  
R = (  3(2A + 1) 

In general, we might expect to be forced to introduce two I I ,  ( P S ) J ;  A, p)d states 
for each I( 1P)j, S ;  A, p ) d  state. But for those A, p which satisfy A = 1 i ( 1  +;) or A = 1 - 2  
we have, trivially, a one-to-one correspondence as in 10, ( P S ) ~ ;  f, p)d = I ( o P ) ~ ,  S ;  4, p ) d .  
Yet, even for the remaining cases, we do not increase the number of states by recoupling. 
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This stems from the fact that the states l(lP)A +& S ;  A, p ) d  and I(ZP)A -+, S ;  A, p ) d  

have the same symmetry under p -p. For example, I( 1 P)2,  S ;  $, $)asym and 
J ( l P ) l ,  S ;  $, both occur for [ n  = 13 and hence together yield the pair 
11, ( P S ) J ;  $, $jasym, ( J  =+, 1). Thus the change to new states which will diagonalise V r i  
does not lead to a bigger matrix. The new states can be expressed by a simple formula 
in terms of states which allow us to tackle the matrix elements Vj;) as in the case 
without spin-orbit coupling. 

The set of recoupled states appears in the right-hand side of table 2. Note that the 
j = 0 states still do not couple to our set; this is because j = 0 implies A = p = 4, a r 6  
state which is unrepresented in our set for odd n. But j=O occurs only for odd n. 

To separate the basis into two parts, one for r 6 , 7  and one for Ts,  we would need 
to build up a set of states which are no longer a combination of only two terms like 
the I . . . A, p ) d .  The number of terms they contain grows like A itself. This is of course 
plausible, since even for the non-spin case the two partners together with which 1 j ,  m ) d  
generates T,, say, have the same property: 

C A!$mIj, m')du+i) for fixed j ,  m ( j  3 1, = 0) generate TI (29)  
M '  

Ij, m > d  

where M ' =  {m' l [m'J2  = 1, lm'l s j } .  To construct similar states in the spin case for rk  
( k  = 6 , 7 , 8 )  is not possible without including 3-jm symbols in their definition in the 
same way as (29)  includes the elements of the rotation matrices, A ! $ , , , = d i ! m ( ~ / 2 )  
(given in Edmonds 1957). 

6. Conclusions 

We have shown that an S 0 ( 3 ) - S 0 ( 2 )  labelling of the symmetry-adapted vibronic basis 
states necessitates a pseudoscalar form of the JT operator. This leads to an analytic 
expression for the general component of the basis. We have extended the method to 
systems which display spin-orbit coupling and treated both interactions on an 
equivalent footing. For a fixed phonon occupation number n, table 3 compares the 
number h( n )  of basis states in our invariant space to the number g (  n )  = $( n + 1)( n + 2) 
of simple direct product states IP)l[n]l)  as used, for instance, by Sakamoto (1980). 
For large n, one finds h ( n )  - i g ( n ) ,  and the same result holds for the case of included 
spin-orbit interaction. Our completed work (Borner 1986) shows that the matrix 
elements of the spherical tensor Vi',' can be given in a compact closed form. The next 
stage in the process is to set up and diagonalise the interaction matrix. This will be 
reported on in a later paper. 

Table 3. 

n 0 1 2 3 4 5 6 7 

h(n1 1 1 3 4 7 8 11 13 
d n )  3 9 18 30 45 63 84 108 
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Appendix 1 

The following proof of equation (8) uses the properties of characters of symmetrised 
products of representations denoted by [ ] and it proceeds without calculating the 
required characters explicitly. 

We denote the five classes of the cubic group 0 in standard notation by E, C 3 ,  C,, 
C,, C;. For operations Gb E C4, C;, the only difference between characters of rl and 
r2 is a reversed sign, i.e. 

XT1(Gb) = -XT2(Gb) the same holds for cy1, a 2 .  ( A l . l )  

The quantity of interest is the character xsym(r:) of the reducible representation ryOI 
of the direct product group OxS,. Here S ,  denotes the symmetric group in n 
dimensions. The subscript 'sym' refers to the identity irrep I of S,, according to which 
the n-phonon system must transform. We need the decomposition of r; 0 I into irreps 
of the octahedral group (similarly for 7,) and use the general formula (see, for example, 
Elliott and Dawber, 1979, appendix 3.1): 

(A1.2) 

where the permutation P contains nk cycles of length k so that n = Z knk. To obtain 
the characters x' of the powers G: E 0, we observe that, since the highest-order axis 
is fourfold, we only have to look at the characters x T ( G t )  for k ~ 4 .  They are given 
in table 4. For example, with G E C, we have G 2  E C2 and therefore x( G2) = x( C,) = -1.  
We deduce the following result: 

x'l( G t N )  = x'2( G i N )  
X'I( GiN+l)  = -xT2( GiN+I)  

x'i( GfN+I)  = xTz( GfN+I)  

for all G, E 0 

for all Gb E C4u C ; c  0 

for all G C ~ E u C j u C 2 ~ O .  

(A1.3) 

We rewrite (A1.2), using a decomposition of n into ng cycles of even lengths g and 
nu cycles of odd lengths U :  

n =C knk =E gn,+C un,. 
k g U 

Table 4. 

t The upper sign refers to T, in each case. 
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Hence the product lI in (A1.2) will become 

( , y ‘ l ~ (  G : ) ) ” R ( X ~ ~ J (  G:)),za. 
g ( P ) u ( P )  

(A1.4) 

Since n is even (odd) if and  only if nu is even (odd),  (A1.3) shows that, for Gb E C4, 
c;, 

x l i m  ( Gb = ( -1  “ x l j m  ( Gb (A1.5) 

whereas for the other G, E E, C 3 ,  C, = 0 the two characters are identical. 
Together with ( A l . l )  the formulae for the decomposition 0 x S, + 0 

(A1.6) 

yield the desired result: 

[ T : N ]  = [ T i N ]  [T:N+l] = ?TIT:NT1] (A1.7) 

where T denotes an  interchange of the irrep subscripts 1, 2 .  (For example, for 
n = 2 N + 1  =3,[7:]= ( v , @ ~ ~ @ 2 ~ ~ a n d [ T : ] =  a 2 @ 7 2 @ 2 ~ 1  = ~ T [ T : ] . )  Multiplying(A1.7) 
by the electronic irrep TI finally gives (A1.8). 

It should be obvious that other groups than 0 allow an identical proof, if their 
character table shows the required properties ( (Al . l ) ,  etc). 

Appendix 2. The connection between l j ,  m > d  and l j ,  TI,*> states 

In this appendix we wish to establish a relationship between two differently labelled 
subsets of the set of basis functions generating the irrep D’) of SO(3). Two group 
chains are used to label the members of these subsets: 

SO(3) = SO(2) = C, 

SO(3) 2 0 2 X 2 Cl 

( C, defines an axis). In the first case, the two ‘usual’ labels ( j ,  m) are sufficient, they 
remove all the degeneracy in the label j .  For the second chain this is not the case and 
in general an  irrep F =  TI(,, will occur several times in the reduction of D”. Hence 
either we have to account for this multiplicity or we have to introduce another label 
belonging to an  irrep of a group X such that the chain 0 = X 2 C1 provides a unique 
labelling (for example, X = D3).  We shall adhere to the former alternative. We write 
the spherical harmonics (e ,  cplj, m) = Y;)(e, cp) in a form which supplies us with 
sufficient information: 

y:’(e, 9) = N ( j ,  l m l ) q m l ( l )  exp(imcp) 5 = COS e - j G m < j  (A2.1) 

N ( j ,  Iml) is the normalisation constant and  Piml are the associated Legendre poly- 
nomials. In our case, m even, the various definitions of the YE,  are identical (see, 
for example, Butkov 1968). Having in mind that we are looking for cubic properties 



T O  r2 Jahn- Teller system 4303 

of I j, m)d  states, we convert this into Cartesian coordinates using 

z / r  = 5 
(x*iy) / r=  (1 -12)1/2 exp(*icp). 

Thus we obtain for the combinations ( m ) *  1-m): 

(A2.2) 

where 

A!”’ = (x  +iy)” * (x  - iy)” 
P - m ) / 2 ) (  z’) 
z * P-m)’2) (z’) 

for j - m e v e n e j  even 
for j - m odd= j odd 

J + ”  

= r l .  (i) ( r2 - z’)J. 

We shall omit the cubic scalar N( j ,  m ) / r ‘  in the following arguments. The real basis 
functions (A2.3) thus comprise the real factor A!”(x, y)  and the polynom.ia1 p”-” of 
degree j - m in z of definite j-dependent parity. We shall find a suitable expression 
for Ai“) by defining 

(A2.4) 

U\$’ span the irrep E, whereas uIT1), wiT2’ are the third partners of the usual bases of 
TI,’. 

A y , ” ’ =  

Algebraic manipulation then yields the following result ( m  = 2k): 

L,(Uk, u k - ‘ u 2 , .  . * ,  u k )  
U * L b ( U k - l ,  U k - 3 u 2 ,  * .  . , u k - l )  

U ’ u 3 L c ( U k - 2 ,  U k - 4 u 2 , .  . . , u k - 2 )  { u 3 L d ( U k - ’ ,  u k - 3 u 2 , .  . . , u k - l )  

for k e ~ e n e [ [ m ] ~ =  0 
for k o d d e [ m I 4 =  2 

for k eveneum], = 0 
for k o d d e [ m ] , = 2  

(A2.5) 
i 

A:”’ = 

where the Li are linear functions of their arguments ( i  = i (  k) = a, . . . , d ) .  The decompo- 
sition (A2.3) and (A2.5) of the combinations 1 j ,  m)d  can be seen to prove (15) directly 
since, first, products of the bases (A2.4) have particularly simple transformation 
properties (=) under 0 (see tables in Koster et a1 1969): 

(A2.6) 

Second, the bases (x, y, z)‘ and (x.P(x’), y.P(y’), z.P(z’))‘, where P is some poly- 
nomial, generate the same matrix irrep of TI; the same holds for (yz, xz, xy)‘ in the 
generation of T 2 .  Table 5 gives those independent TI,’ basis functions which resolve 
the multiplicity in the label j (always the third partner in the TI,,-generating triplet). 
Thus, for j = 5 ,  for example, we have two irreps TiA’,  T‘,B’ in the decomposition of 
Di5), and their respective bases contain I j ,  TiA), z) = / 5 ,0 )  and I j ,  TiB’, z) = 15,4) + 15, -4) 
as the third (z)  partner. To conclude, the symmetry determining factors in Ij, m)d  are 
thus xy, z, and (x2-  y’). Table 5 orders these bases with rising j. 
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Table 5. 

1 TI 
2 T2 
3 TI 

T2 
4 

t Here g(*) is some polynomial in ( ~ ~ - y * ) ~  and ( ~ y ) ~  
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