A pseudoscalar operator approach to the $T \otimes \mathrm{~T}_{2}$ Jahn-Teller system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 214289
(http://iopscience.iop.org/0305-4470/21/23/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:32

Please note that terms and conditions apply.

A pseudoscalar operator approach to the $T \otimes \tau_{2}$ Jahn-Teller system

H P Borner and M C M O’Brien
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

Received 8 June 1988

Abstract

We describe the linear $T \otimes \tau_{2}$ Jahn-Teller interaction as a pseudoscalar operator in electron-phonon space. In this form it is found to mix states within an invariant minimal subspace for which we give basis vectors in an analytic form for arbitrary phonon numbers. These vibronic states are labelled by spherical symmetry quantum numbers and possess definite cubic symmetry at the same time. It is shown how to extend the method to the case when the Jahn-Teller interaction competes with spin-orbit coupling.

1. Introduction

The problem of linear Jahn-Teller (JT) coupling of a degenerate electronic triplet to lattice modes has been much studied in past decades. In a cubic environment, a simple solution can be found only when the electronic triplet is coupled solely to the ε modes of vibration because ε operators in the triplet basis commute. In contrast to this, for ${ }_{\mathrm{JT}}$ coupling involving τ_{2} excitations of the ligands, the so-called $T \otimes \tau_{2}$ and $T \otimes\left(\varepsilon \oplus \tau_{2}\right)$ JT problems, the vibronic interaction mixes electronic and nuclear motions at all coupling strengths. There we can only expect analytic solutions for limiting cases, and these are now well known (Moffitt and Thorson 1957, O'Brien 1969, 1971). In the strong coupling limit, the adiabatic approach has been fruitful, whereas weak coupling is treated by QM perturbation theory.

However, in many situations one is concerned with vibronic behaviour at intermediate coupling strengths. For these the Jт Hamiltonian is usually diagonalised in a convenient set of basis states. The principal hazards here are the size of the matrix and the difficulty of getting general expressions for the matrix elements. Caner and Englman (1966) used symmetry-adapted vibrational eigenstates including up to 12 phonon excitations. Their method involved using phonon states tabulated explicitly for each phonon excitation number, and hence was not readily extendible to higher coupling strengths. Later, Sakamoto and Muramatsu (1978) used eigenstates in a general form, which was simply a direct product basis of electronic and quantum oscillator states, in which case a large number of basis states is required for matrix diagonalisation and these states are not symmetry adapted.

In this paper, we shall address ourselves to constructing a complete set of symmetryadapted vibronic basis states for $T \otimes \tau_{2}$ JT coupling. We shall find a general expression for these coupled states which allows the inclusion of states with an arbitrary number of phonons. Our method uses angular momentum theory and spherical tensor techniques to represent the action of the linear JT interaction as a pseudoscalar vibronic operator. In this way we shall classify vibronic basis states of definite cubic symmetry
using the irreducible representations (irreps) of $\mathrm{SO}(3)$ and $\mathrm{SO}(2)$ as labels. This method is aimed at calculating features such as optical absorption bandshapes for which many excited states of the Jahn-Teller system must be known. It is not particularly aimed at producing good ground states and reduction factors, and so it should be regarded as complementary to and not competitive with the various transformation methods.

2. The $\boldsymbol{T} \otimes \tau_{2}$ tensor Hamiltonian

We begin by writing the linear $T \otimes \tau_{2}$ JT Hamiltonian as a matrix operator inside the electronic triplet manifold with two terms as

$$
H=H_{0}+V_{J T}
$$

where

$$
\begin{align*}
H_{0} & =\left(\frac{1}{2 \mu_{\tau}}\left(P_{y z}^{2}+P_{x z}^{2}+P_{x y}^{2}\right)+\frac{1}{2} \mu_{\tau} \omega_{\tau}^{2}\left(Q_{y z}^{2}+Q_{x z}^{2}+Q_{x y}^{2}\right)\right) 1 \\
V_{\mathrm{JT}} & =-l_{\tau}\left(\begin{array}{ccc}
0 & Q_{y z} & Q_{x z} \\
Q_{y z} & 0 & Q_{x y} \\
Q_{x z} & Q_{x y} & 0
\end{array}\right) \tag{1}
\end{align*}
$$

where μ_{τ} and ω_{τ} are the effective mass and frequency of the τ_{2} oscillator given by the normal coordinates for ligand motion $Q_{y z}, Q_{x z}, Q_{x y}$; the linear coupling constant is l_{τ}, related to the k of Englman and Caner (1970) and the L_{τ} of Englman (1972) by

$$
l_{\tau}=-k=L_{\tau} / \sqrt{ } 6
$$

and it is identical to the V_{T} in O'Brien (1969) and Judd (1974) and F_{T} in Bersuker (1984).
The trick that turns $V_{J T}$ into a form in which angular momentum coupling theory can be used is to write it in the following form:

$$
\begin{equation*}
V_{J \mathrm{~T}}=l_{\tau}\left[\left\{L_{y}, L_{z}\right\} Q_{y z}+\left\{L_{x}, L_{z}\right\} Q_{x z}+\left\{L_{x}, L_{y}\right\} Q_{x y}\right] \tag{2}
\end{equation*}
$$

where the orbital operators L obey

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=\mathrm{i} \varepsilon_{i j k} L_{k} \quad\left\{L_{i}, L_{j}\right\}=L_{i} L_{j}+L_{j} L_{i} \equiv \Omega_{i j} \quad i \neq j \tag{3}
\end{equation*}
$$

and we represent the L_{i} by the matrices in an $L=1$ basis:

$$
L_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\mathrm{i} \\
0 & \mathrm{i} & 0
\end{array}\right) \quad L_{y}=\left(\begin{array}{ccc}
0 & 0 & \mathrm{i} \\
0 & 0 & 0 \\
-\mathrm{i} & 0 & 0
\end{array}\right) \quad \mathrm{L}_{\mathrm{z}}=\left(\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence we regain the interaction as a scalar product with respect to the cubic group: $V_{\mathrm{JT}}=l_{\tau} \boldsymbol{\Omega} \cdot \boldsymbol{Q}$.

We know that we can easily transform L operators, as well as Q operators, into rank-1 spherical tensors which act, respectively, in the three-dimensional electronic manifold and the infinite-dimensional harmonic oscillator/phonon space. We express $V_{J T}$ as a product of these tensor operators, the product to be built up according to the usual rule (see Rotenberg et al (1959), which is the convention we adopt throughout this paper). Using the spherical components of L :

$$
L_{0}^{(1)}=L_{z} \quad L_{ \pm 1}^{(1)}=\mp\left(L_{x} \pm \mathrm{i} L_{y}\right) / \sqrt{ } 2
$$

we define the second-rank tensor $\boldsymbol{T}^{(2)}$ by

$$
T_{m}^{(2)} \equiv l_{\tau}(-1)^{m} \sqrt{5} \sum_{m_{1}, m_{2}=-1}^{1}\left(\begin{array}{ccc}
1 & 1 & 2 \\
m_{1} & m_{2} & -m
\end{array}\right) L_{m_{1}}^{(1)} L_{m_{2}}^{(1)}
$$

where we have absorbed the coupling constant l_{τ} into $\boldsymbol{T}^{(2)}$. Defining the spherical tensor $\boldsymbol{Q}^{(1)}$ in an identical fashion to $\boldsymbol{L}^{(1)}$, we now construct the third-rank tensor $\boldsymbol{V}^{(3)}$:

$$
V_{q}^{(3)}=(-1)^{1-q} \sqrt{7} \sum_{m=-2}^{2} \sum_{k=-1}^{1}\left(\begin{array}{ccc}
2 & 1 & 3 \tag{4}\\
m & k & -q
\end{array}\right) T_{m}^{(2)} Q_{k}^{(1)} .
$$

The JT interaction is represented in this third-rank tensor by the components

$$
\begin{equation*}
V_{ \pm 2}^{(3)}=l_{\tau}\left[\left(L_{x}^{2}-L_{y}^{2}\right) Q_{x y}+\Omega_{x z} Q_{y z}-\Omega_{y z} Q_{x z} \pm \mathrm{i}\left(\Omega_{y z} Q_{y z}+\Omega_{x z} Q_{x z}+\Omega_{x y} Q_{x y}\right)\right] / 2 \sqrt{ } 3 . \tag{5}
\end{equation*}
$$

No other components of $\boldsymbol{V}^{(3)}$ contain terms of the form $\Omega_{\gamma} Q_{\gamma}$ (where $\gamma=x z, y z, x y$). Thus we have

$$
\begin{equation*}
V_{\mathrm{JT}}=\mathrm{i} \sqrt{3}\left(V_{2}^{(3)}-V_{-2}^{(3)}\right) \equiv V_{J T}^{(3)} \tag{6}
\end{equation*}
$$

The properties of the $\left\{L_{i}\right\}$ and the fact that $\boldsymbol{\Omega}$ and \boldsymbol{Q} are real symmetric show that $\boldsymbol{V}_{J T}^{(3)}$ is Hermitian, as required.

3. The symmetry of $V_{J T}^{(3)}$

In later sections we shall exploit the form of the tensor $\boldsymbol{V}_{J T}^{(3)}$ given in (6) to find a subspace for each $(3(n+1)(n+2) / 2)$-dimensional product space $\left\{\left|[n], l, m_{i} ; p\right\rangle\right\}$ (where $p=x, y, z, l=n, n-2, \ldots, n \bmod 2,\left|m_{l}\right| \leqslant l, n$ fixed). Here the state $\left|[n], l, m_{l} ; p\right\rangle$ represents the simple product of the three-dimensional oscillator state $\left|[n], l, m_{l}\right\rangle$ with the electronic T_{1} state $|p\rangle$. The oscillator state is labelled, in the usual manner, using the irreps of the group chain $\mathrm{U}(3) \supset \mathrm{SO}(3) \supset \mathrm{SO}(2)$. We shall adopt two modes of attack: first we shall consider the spherical properties of $\boldsymbol{V}_{J T}^{(3)}$; then we shall investigate the transformation properties of $\boldsymbol{V}_{J T}^{(3)}$ under the cubic group. Since the combination $Y_{2}^{3}-Y_{-2}^{3}$ of spherical harmonics behaves like the cartesian product $x y z, \boldsymbol{V}_{\mathrm{JT}}^{(3)}$ transforms as the pseudoscalar irrep A_{2} of O , the octahedral group.

The origin of this property can be followed through the coupling scheme. We began with a scalar interaction for $T \otimes \boldsymbol{\tau}_{2}$:

$$
\begin{equation*}
V_{\mathrm{JT}}=\sum_{\gamma} l_{\tau} \Omega_{\gamma}^{\tau} Q_{\gamma}^{\tau} \tag{7}
\end{equation*}
$$

where the electronic operators $\boldsymbol{\Omega}$, as well as the phonon operators \boldsymbol{Q}, transformed like τ_{2}. The product in (7) refers to the cubic group and transforms like the irrep A_{1}. We have altered this, however, by representing Q by the rank-1 spherical tensor $\boldsymbol{Q}^{(1)}$, which transforms like $D^{(1)}$ under $S O(3)$ and hence like τ_{1} under O. Ω, on the other hand, was represented by $\boldsymbol{T}^{(2)}$ and, as a second-rank tensor, transforms like $D^{(2)}$, which contains the irrep τ_{2}. From the product

$$
\tau_{2} \otimes \tau_{1}=A_{2} \oplus E \oplus T_{1} \oplus T_{2}
$$

we recognise that we can extract the component A_{2} but not A_{1} from our construction of $\boldsymbol{V}_{J T}^{(3)}$.

We are interested in those states which mix with the vibronic triplet ground state via the Jahn-Teller interaction. For an electronic P state $\left(T_{1}\right)$ the vibronic ground state associated with $(n=0)$ is a T_{1} triplet. Hence we must look at all the T_{1} terms which emerge from the multiplets $\{[n] l, P ; j, m\}$ for a given n. However, the pseudoscalar $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ acts on a T_{1} state to produce a T_{2} state and vice versa so it looks as though T_{1} and T_{2} states must be involved. The key to this apparent inconsistency lies with the fact that the octahedral group is being used as an abstract group to classify the transformation properties of $\boldsymbol{V}_{J T}^{(3)}$ and the states among which it acts.

Figure 1. Transformation properties of the JT operator and vibronic states.

Phonon states (τ_{2} excitations) with quantum number n, l (where $l=n, n-$ $2, \ldots, n \bmod 2$) transform like $D^{(l)}$; so for $n=l=1$ we obtain $D^{(1)}$ which reduces to τ_{1}, not τ_{2}, under O . Thus, after coupling to the P electron, the labelling of the phonons by SO (3) causes an interchange of those irrep indices contained in [$n=1$]. (Compare $\tau_{1} \otimes T_{1}=A_{1} \oplus E \oplus T_{1} \oplus T_{2}$ to $\tau_{2} \otimes T_{1}=A_{2} \oplus E \oplus T_{2} \oplus T_{1}$.) Accordingly, for $n=1$, the abstract T_{2} term plays the role of the physical T_{1} term, and we need the pseudoscalar property of $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ to couple the $n=0, T_{1}$ term to the (physical) T_{1} term of $n=1$. For odd n, consistency thus forces T_{2} states to play the role of physical T_{1} states (figure 1 generalises this point in a schematic form).

To show that this is indeed the case, we must compare the representation $\left[\tau_{1}^{n}\right] \otimes T_{1}$ with $\left[\tau_{2}^{n}\right] \otimes T_{1}$ for a system of n phonons coupled to a p electron. Here [$\left.\tau_{1}^{n}\right]$ denotes the symmetrised direct product of n phonon irreps τ_{1}. A group theoretical analysis shows that for n even:

$$
\left[\tau_{1}^{n}\right] \otimes T_{1}=\left[\tau_{2}^{n}\right] \otimes T_{1}
$$

but for n odd:

$$
\begin{align*}
& {\left[\tau_{2}^{n}\right] \otimes T_{1}=N_{1} T_{1} \oplus N_{2} T_{2} \oplus N_{3} E \oplus N_{4} A_{1} \oplus N_{5} A_{2}} \\
& {\left[\tau_{1}^{n}\right] \otimes T_{1}=N_{2} T_{1} \oplus N_{1} T_{2} \oplus N_{3} E \oplus N_{5} A_{1} \oplus N_{4} A_{2}} \tag{8}
\end{align*}
$$

A detailed proof of these relations is reserved for appendix 1.

4. An invariant subspace of states for $V_{J T}^{(3)}$

We now couple the phonon momentum l to the p electron to give the total pseudomomentum j with the $\operatorname{SO}(2)$ label m. We denote the states by $|([n], l) P ; j, m\rangle_{d}$, where the additional label d distinguishes states symmetric (s) or antisymmetric (a) under $m \rightarrow-m$; it is not an independent variable but depends uniquely on j, as we shall see. Considering the cubic properties of $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$, we know that, as a pseudoscalar operator, it maps the i th component of a T_{1}-generating basis onto the i th component of a T_{2}-generating basis when the bases are chosen appropriately, $i=1,2,3$. Thus it is possible to work in that subspace of states obtained by considering, for instance, the $i=3$ components of each $T_{1}\left(T_{2}\right)$ irrep produced in the reduction of $D^{(j)}$ under cubic symmetry, for n even (odd).

The next question is whether the cubic symmetry states in this subspace will still have a simple form with the above choice of spherical quantum numbers.

The selection rules for $V_{\mathrm{JT}}^{(3)} \propto V_{2}^{(3)}-V_{-2}^{(3)}$ are $|\Delta n|=1,|\Delta l|=1$ and $|\Delta j| \leqslant 3$ as can be seen by the way it is constructed. Considering its action on the ket $|([0], 0) P ; 1,0\rangle$ we observe that the only resulting bra which is not orthogonal to $\boldsymbol{V}_{\mathrm{JT}}^{(3)}|([0], 0) P ; 1,0\rangle$ is $\langle([1], 1) P ; 2,2|+\langle([1], 1) P ; 2,-2|$.

In what follows we set out to systematise these selection properties. It turns out that an invariant subspace with respect to $V_{\mathrm{JT}}^{(3)}$ is spanned exclusively by the states

$$
\begin{equation*}
\left.\left.|([n] l) P ; j, m\rangle_{d} \equiv\left(1 / N_{1}\right)| |([n] l) P ; j, m\right\rangle+(-1)^{j+1}|([n] l) P ; j,-m\rangle\right) \tag{9}
\end{equation*}
$$

if we start with $|([0], 0) P ; 1,0\rangle$. Here the normalisation is

$$
\begin{equation*}
N_{\mathrm{t}}=(-\mathrm{i})^{[n \mathbb{1}} \sqrt{2\left(1+\delta_{m, 0}\right)} \tag{10}
\end{equation*}
$$

and we define throughout this paper

$$
n=\llbracket n \rrbracket_{M} \bmod M \Leftrightarrow \llbracket n \rrbracket_{M} \equiv M(n / M-[n / M])
$$

where $[x]=\max \{N: N \leqslant x\}$ is Gauss' bracket function. We shall omit the index M in $\llbracket n \rrbracket_{M}$ in case $M=2$. We omit n, l, p in the kets whenever they are determined by context or are left arbitrary in their effect. N_{1} attaches a phase ($+i$) to all kets with odd n, for consistency at a later stage. This freedom stems from applying Schur's lemma to the group $\mathrm{U}(3)$ (see, for example, Butler 1981). N_{1} ensures that ${ }_{d}\left\langle j^{\prime} m^{\prime} \mid j, m\right\rangle_{d}=\delta_{j^{\prime} j} \delta_{m^{\prime} m}$ and that $|j, 0\rangle_{d}=|j, 0\rangle$. (We shall have $m=0$ states only for even n.)

Thus in (9) symmetric states occur for odd j and antisymmetric states for j even. Acting with $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ on a state $|j, m\rangle+|j,-m\rangle$ produces a superposition of states $\left|j^{\prime}, m^{\prime}\right\rangle+$ $(-1)^{\omega\left(j^{\prime}\right)}\left|j^{\prime},-m^{\prime}\right\rangle$ with $\left|j-j^{\prime}\right| \leqslant 3$ and some function $\omega\left(j^{\prime}\right)$. This shows that we are indeed operating in an invariant subspace under $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$. We cast this into a more symmetric form and apply the Wigner-Eckhart theorem for $\operatorname{SO}(3)$ to obtain

$$
\begin{align*}
& \left(\left\langle j^{\prime}, m^{\prime}\right|+(-1)^{j^{\prime+1}}\left\langle j^{\prime},-m^{\prime}\right|\right)\left(V_{2}^{(3)}-V_{-2}^{(3)}\right)\left(|j, m\rangle \pm(-1)^{j+1}|j,-m\rangle\right) \\
& \quad= \begin{cases}\mathscr{M}(-1)^{j^{\prime}-m^{\prime}} 2\left\{\left[\left(\begin{array}{ccc}
j^{\prime} & 3 & j \\
-m^{\prime} & 2 & m
\end{array}\right)+(-1)^{j^{\prime}+1}\left(\begin{array}{ccc}
j^{\prime} & 3 & j \\
m^{\prime} & 2 & m
\end{array}\right)\right]\right. \\
\left.-\left[\left(\begin{array}{rrr}
j^{\prime} & 3 & j \\
-m^{\prime} & -2 & m
\end{array}\right)+(-1)^{j^{\prime}+1}\left(\begin{array}{ccc}
j^{\prime} & 3 & j \\
m^{\prime} & -2 & m
\end{array}\right)\right]\right\} & \text { for ' }+\prime \\
0 & \text { for ' }- \text { ' }\end{cases} \tag{11}
\end{align*}
$$

Here \mathscr{M} denotes the reduced matrix element of the interaction tensor.
With this knowledge about $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ we are led to ask how many states $|j, m\rangle_{d}$ we need to consider for a fixed j. If we start with $|1,0\rangle$ and use

$$
\begin{equation*}
\left|m^{\prime}\right|=|m \pm 2| \tag{12}
\end{equation*}
$$

we obtain a 'cone' of states which can be connected via $\boldsymbol{V}_{J T}^{(3)}$, as in figure 2.
Because of the combination states (9) we need only consider the $m \geqslant 0$ half-cone. The property (12) is encoded in figure 2 by requiring

$$
\{a, s\} \stackrel{v_{T T}^{(B)}}{\longleftrightarrow}\{A, S\} .
$$

An expression for the number $a^{(j)}$ of $|j, m\rangle_{d}$ states for fixed j is

$$
\begin{equation*}
a^{(j)}=\left(\left[\frac{1}{2} j\right]+1\right)-(1-\llbracket j \rrbracket) . \tag{13}
\end{equation*}
$$

We observe that, for large $j, a^{(j)} \approx O\left[\frac{1}{4}(2 j+1)\right]$.
It is important now to note that $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ maps between states of two kinds:

$$
\begin{align*}
& n \text { even } \leftrightarrow n \text { odd } \\
& T_{1} \quad \leftrightarrow T_{2} \tag{14}\\
& \llbracket m \rrbracket_{4}=0 \leftrightarrow \llbracket m \rrbracket_{4}=2 .
\end{align*}
$$

This leads to the hypothesis:

$$
\begin{align*}
& |j, m\rangle_{d} \text { is a } T_{1} \text { state } \Leftrightarrow \llbracket m \rrbracket_{4}=0 \\
& |j, m\rangle_{d} \text { is a } T_{2} \text { state } \Leftrightarrow \llbracket m \rrbracket_{4}=2 \tag{15}
\end{align*}
$$

and allows us to use only states of either T_{1} or T_{2} property for each n. In appendix 2 we give a direct proof for (15) by investigating the transformation properties of spherical harmonics under the cubic group O .

Figure 2. Allowed vibronic states $|([n], l) P ; j, m\rangle_{d}$ for n, l fixed; $d=a, s$.
For the number of $T_{1(2)}$ states we lconsider, for a fixed value of j, we can extend (13) as follows $\left(j \equiv \llbracket j \rrbracket_{N} \bmod N\right)$:

$$
\begin{align*}
& a_{T_{1}}^{(j)}=\frac{1}{2}\left(\left[\frac{1}{2} j\right]+1+\left(1-\left[\frac{1}{2} \llbracket j \rrbracket_{4}\right]\right)\right)-\left(1-\llbracket j \rrbracket_{2}\right) \\
& a_{T_{2}}^{(j)}=\frac{1}{2}\left(\left[\frac{1}{2} j\right]+1-\left(1-\left[\frac{1}{2} \llbracket j \rrbracket_{4}\right]\right)\right) . \tag{16}
\end{align*}
$$

Since we always pick out the same partner of the $T_{1(2) \text { - generating basis triplet, i.e. one }}$

Table 1.

		$\|(j) m\rangle_{d}$	$a_{T_{1}}^{(n)}$	$a_{T_{2}}^{(n)}$	
$n=0$	$l=0 \quad j=1$	\|0>	1		
$n=1$	$l=1 \quad j=2$	$\|2\rangle-\|-2\rangle$		1	
$n=2$	$l=2 \quad j=3$	\|0)	3		
	$j=1$	\|0>			
	$l=0 \quad j=1$	\|0)			
$n=3$	$l=3 \quad j=4$	$\|2\rangle-\|-2\rangle$		4	
	$j=3$	$\|2\rangle+\|-2\rangle$			
	$j=2$	$\|2\rangle-\|-2\rangle$			
	$l=1 \quad j=2$	$\|2\rangle-\|-2\rangle$			
$n=4$	$l=4 \quad j=5$	$\|4\rangle+\|-4\rangle$	7		
		\|0)			
	$j=4$	\|4) $-\|-4\rangle$			
	$j=3$	$\|0\rangle$			
	$l=2 \quad j=3$	\|0)			
	$j=1$	$\|0\rangle$			
	$l=0 \quad j=1$	\|0)			
$n=5$	$l=5 j=6$	$\|6\rangle-\|-6\rangle$		8	
		$\|2\rangle-\|-2\rangle$			
	$j=5$	$\|2\rangle+\|-2\rangle$			
	$j=4$	\|2) $-\|-2\rangle$			
	$l=3 \quad j=4$	\|2) $-\|-2\rangle$			
	$j=3$	$\|2\rangle+\|-2\rangle$			
	$j=2$	\|2)-	-2>		
	$l=1 \quad j=2$	$\|2\rangle-\|-2\rangle$			
$n=6$	$l=6 \quad j=7$	$\|4\rangle+\|-4\rangle$			
		\|0)			

state per irrep, these numbers $a_{T}^{(j)}$ should equal the multiplicity of $T_{1(2)}$ in the reduction of the irrep $D^{(j)}$ of $\mathrm{SO}(3)$ under O .

For these multiplicities $b_{T_{1,2}}^{(j)}$ we give closed formulae:

$$
\begin{align*}
& b_{T_{1}}^{(j)}=\frac{1}{8}\left\{2 j+1-3(-1)^{j}+2(-1)^{[\mathrm{L} / 2]]_{2}}\right\} \\
& b_{T_{2}}^{(j)}=\frac{1}{8}\left\{2 j+1+(-1)^{j}-2(-1)^{[[j / 2]]_{2}}\right\} . \tag{17}
\end{align*}
$$

It is possible to show that indeed

$$
a_{T_{1,2}}^{(j)}=b_{T_{1,2}}^{(j)} .
$$

Thus, to summarise, we have shown that we obtain an invariant subset of states with respect to $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ by using the basis (whose low states are listed in table 1)

$$
\left.N_{1} \mid([n], l) P ; j, m\right)_{d}=|([n], l) P ; j, m\rangle+(-1)^{j+1}|([n], l) P ; j,-m\rangle
$$

with the following ranges for the quantum numbers:

$$
\begin{align*}
& n \in \mathbb{N}^{0} \quad l=n, n-2, \ldots, \llbracket n \rrbracket_{2} \\
& j= \begin{cases}l+1, l, l-1 & l \neq 0 \\
1 & l=0\end{cases} \tag{18}\\
& m \in\left\{m \mid \llbracket m \rrbracket_{4}=2 \llbracket n \rrbracket_{2}, 0 \leqslant m \leqslant j\right\} .
\end{align*}
$$

5. Inclusion of electronic spin-orbit interaction

Many physical systems show a behaviour which indicates that the spin-orbit interaction may be comparable in magnitude to the Jahn-Teller interaction. We allow for this by introducing a further term $\boldsymbol{V}_{L S}$ in the linear interaction Hamiltonian:

$$
\begin{equation*}
V_{J T}+V_{L S} \equiv\left(Q_{\text {phonon }}^{(1)} T_{\text {orbit }}^{(2)}\right)^{(3)} \otimes 1_{\text {spin }}+1_{\text {phonon }} \otimes \Lambda\left(L_{\text {orbit }}^{(1)} \cdot S_{\text {spin }}^{(1)}\right) \tag{19}
\end{equation*}
$$

which acts in the electronic part of the system. Here Λ is the spin-orbit coupling constant, the scalar product refers to the electronic space, and the fact that the Jahn-Teller and spin-orbit couplings are of comparable magnitude prevents us from treating them hierarchically. We still regard the cubic crystal field dominating over $\boldsymbol{V}_{\mathrm{JT}}$ and $\boldsymbol{V}_{L S}$ so as to enable us to classify the states according to the octahedral group O. Treating both interactions simultaneously allows us to consider the action of $V_{L S}$ inside the electronic triplet $P\left(T_{1}\right)$ as before. Two schemes exist to couple L and l, the orbital and vibrational angular momenta, to the spin S, to yield the resulting pseudoangular momentum labels λ, μ. We depict these coupling schemes in figure 3 .

The challenge, now, is to find a subset of the set of all possible wavefunctions $\{|([n] l),(P S) J ; \lambda, \mu\rangle\}$ which is small and invariant with respect to both operators, $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ and $W_{L S}$. We want to extend the method developed in § 4 for this purpose. There we succeeded by considering only the third component of each basis triplet which generates the vibronic T_{1} or T_{2} irrep. Incorporating spin leads to the use of the double octahedral group irreps $\Gamma_{6}, \Gamma_{7}, \Gamma_{8}$. The spin eigenfunctions $\left|S=\frac{1}{2}, \uparrow\right\rangle$ and $\left|S=\frac{1}{2}, \downarrow\right\rangle$ generate Γ_{6}. Physically, the process of interest could be an optical absorption from a ground-state doublet, $\Gamma_{6}=A_{1} \otimes \Gamma_{6}$, by a dipole operator d, transforming like $D^{(1)} \rightarrow T_{1}$. Thus only the final states of Γ_{6} and Γ_{8} give rise to a non-zero contribution. In short $\left\langle\Gamma_{6,8}\right| d^{T_{1}}\left|\Gamma_{6}\right\rangle \neq 0$.

Recalling $L * S=L_{z} S_{z}+\frac{1}{2}\left(L^{+} S^{-}+L^{-} S^{+}\right)$, where $L^{ \pm} \equiv L_{x} \pm i L_{y}=\mp \sqrt{ } 2 L_{ \pm 1}^{(1)}$ and $L_{z}=$ $L_{0}^{(1)}$ (similarly for S), we note that L enters $V_{L S}$ as a rank-1 tensor, whereas it entered

Figure 3. Alternative coupling schemes for system with competing Jahn-Teller and spinorbit interactions.
$\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ as a rank-2 tensor $\left(\boldsymbol{T}^{(2)}\right)$. This suggests that the convenient properties of the symmetry-adapted $\left|j,\left(T_{1,2}\right)_{i=3}\right\rangle$ states under $\left(\boldsymbol{Q}^{(1)} \boldsymbol{T}^{(2)}\right)^{(3)}$ will not be accompanied by simple behaviour of uncoupled simple product states like $\left|j,\left(T_{1,2}\right)_{3}\right\rangle|S, \uparrow\rangle$ under $V_{L S}$. This leads us to concentrate on the spherical properties of the operators in order to find a fruitful way to define new states.

We do not expect to obtain as simple a situation with respect to O as in the case without spin. Yet, the knowledge that a pseudoscalar operator couples the states

$$
\begin{equation*}
\Gamma_{6} \leftrightarrow \Gamma_{7} \quad \Gamma_{8} \leftrightarrow \Gamma_{8} \tag{20}
\end{equation*}
$$

will prove to be helpful. We shall show that it is possible to find an invariant subspace of states $\left\{|([n] l), J ; \lambda, \mu\rangle_{d}\right\}$ with respect to both interactions, the states having a simple form similar to the $|j, m\rangle_{d}$ states used in §4. Moreover, they contain the electronic total momentum J and will thus diagonalise $V_{L S}$.

At first we shall proceed, however, by retaining the quantum number j as a label; not until later shall we return to construct the $|([n] l), J ; \lambda, \mu\rangle$ states by recoupling. We consider the action of $\boldsymbol{V}_{\mathrm{JT}}^{(3)} \equiv\left(\boldsymbol{V}_{\mathrm{JT}}^{(3)} \mathbf{1}_{\text {spin }}\right)^{(3)}$ when put between the coupled states $|([n] l) P, j, S ; \lambda, \mu\rangle$, where 1 denotes the identity operator in the spin Hilbert space. With respect to $\lambda, \mu, \boldsymbol{V}_{J T}^{(3)}$ has the same selection rules as it had before with respect to j, m. Let us define again a combination state $|([n] l, P) j, S ; \lambda, \mu\rangle_{d}$, for which d distinguishes between a sum or a difference of $|\lambda, \mu\rangle$ states and depends uniquely on λ :

$$
\begin{align*}
& N_{2}|\lambda, \mu\rangle_{d}=|\lambda, \mu\rangle+(-1)^{\lambda-\frac{t}{5}}|\lambda,-\mu\rangle \\
& N_{2} \equiv(-i)^{[n] \sqrt{ } 2} \tag{21}
\end{align*}
$$

(we supressed the labels ($[n] l, P) j, S$ in the kets).
The same argument as in the case without spin requires us to calculate

$$
\begin{align*}
& \left(\left\langle\lambda^{\prime}, \mu^{\prime}\right|+(-1)^{\lambda^{\prime}-\frac{1}{2}}\left\langle\lambda^{\prime},-\mu^{\prime}\right|\right) \boldsymbol{V}_{\mathrm{JT}}^{(3)}\left(|\lambda, \mu\rangle \pm(-1)^{\lambda-\frac{1}{2}}|\lambda,-\mu\rangle\right) / \mathrm{i} \sqrt{3} \\
& \quad=\left\{\begin{array}{lll}
\mathbf{M}(-1)^{\lambda^{\prime}-\mu^{\prime}} 2\left\{\left[\left(\begin{array}{ccc}
\lambda^{\prime} & 3 & \lambda \\
-\mu^{\prime} & 2 & \mu
\end{array}\right)-(-1)^{\lambda^{\prime}-\frac{1}{2}}\left(\begin{array}{lll}
\lambda^{\prime} & 3 & \lambda \\
\mu^{\prime} & 2 & \mu
\end{array}\right)\right]\right. \\
\left.-\left[\left(\begin{array}{rrr}
\lambda^{\prime} & 3 & \lambda \\
-\mu^{\prime} & -2 & \mu
\end{array}\right)-(-1)^{\lambda^{\prime}-\frac{1}{2}}\left(\begin{array}{rrr}
\lambda^{\prime} & 3 & \lambda \\
\mu^{\prime} & -2 & \mu
\end{array}\right)\right]\right\} & \text { for ' }+{ }^{\prime} \\
0 & \text { for ' }-\prime
\end{array}\right. \tag{22}
\end{align*}
$$

where \mathbf{M} is independent of μ, μ^{\prime}. Hence $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ has the $\left\{|\ldots ; \lambda, \mu\rangle_{d}\right\}$ space as an invariant subspace. The possible states in the λ, μ plane are twice as dense as in the non-spin
case since $\left|\lambda, \frac{1}{2}\right\rangle_{d}$ now couples to $\left|\lambda, \frac{3}{2}\right\rangle_{d}$. (Every state $|\lambda, \mu\rangle_{d}$ with positive μ automatically represents the same state as $|\lambda,-\mu\rangle_{d}$.) To reduce the number of basis states needed we exploit that $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ connects states with definite n and μ :

$$
\begin{align*}
& n: \text { even } \rightarrow \text { odd } \rightarrow \text { even } \rightarrow \text { odd } \rightarrow \ldots \\
& \boldsymbol{V}_{\mathrm{JT}}^{(3)} \tag{23}\\
& \llbracket|\mu|-\frac{1}{2} \rrbracket_{4}: 0,3 \rightarrow 1,2 \rightarrow 0,3 \rightarrow 1,2 \rightarrow \ldots .
\end{align*}
$$

Hence, together with property (20) we deduce

$$
\begin{align*}
& |\lambda, \mu\rangle_{d} \text { states with } \llbracket|\mu|-\frac{1}{2} \rrbracket_{4}=0 ; 3 \text {, generate only } \Gamma_{6}, \Gamma_{8} \\
& |\lambda, \mu\rangle_{d} \text { states with } \llbracket|\mu|-\frac{1}{2} \rrbracket_{4}=1 ; 2 \text {, generate only } \Gamma_{7}, \Gamma_{8} . \tag{24}
\end{align*}
$$

This agrees with the table for low λ of Lea et al (1962). The difference to the non-spin case is the fact that the states $|\lambda, \mu\rangle_{d}$ cannot be associated with a single basis function of either $\Gamma_{6(7)}$ or Γ_{8}, but this last property is not necessary for our reduction method to work.

To give an example, linear combinations of the two states $|\lambda, \mu\rangle_{d}=\left|\frac{5}{2}, \frac{5}{2}\right\rangle_{d},\left|\frac{5}{2},-\frac{3}{2}\right\rangle_{d}$ constitute a basis for the irrep Γ_{7}, but they also contribute to the basis functions of Γ_{8}. Thus, even by starting the scheme of states with the pure Γ_{6} state $\left|([0] 0),(P S)_{\frac{1}{2}}^{2} ; \frac{1}{2}, \frac{1}{2}\right\rangle_{\text {sym }}$ which couples only to the Γ_{7} state in $(n=1)$, we lose the information about the coefficients in the linear combination of the two above states constituting the Γ_{7} basis state.

At this point we must use an additional argument to ensure the hermiticity of the interaction matrix at a later stage by maintaining the condition

$$
\begin{equation*}
\llbracket \mu^{\prime}-\mu \rrbracket_{2}=0 \tag{25}
\end{equation*}
$$

instead of

$$
\left|\mu^{\prime}\right|=|\mu \pm 2|
$$

We can achieve that by replacing, for $2|\mu|=3,7,11,15, \ldots$, i.e. $|\mu|=(4 k-1) / 2, k \in \mathbb{N}$, the previously considered states $|\lambda,|\mu|\rangle_{d}$ by states with negative $\mathrm{SO}(2)$ label $|\lambda,-|\mu|\rangle_{d}$. The coupling behaviour of the states among themselves is, of course, not affected by this rearrangement as long as we take one state $|\lambda, \mu\rangle_{d}$ per pair $|\lambda, \pm \mu\rangle$. Finally, we write down the first elements of the complete set of states, which for the moment still contains the non-spin vibronic quantum number j (left half in table 2). The states we have set up so far are convenient for calculating matrix elements of $\boldsymbol{V}_{\mathrm{JT}}^{(3)} \mathbf{1}_{\text {spin }}$. We mentioned that they do not yield the matrix elements of $\boldsymbol{V}_{L S}$ in a simple way.

It should be noted that our reduction method based on the states (21) (combinations in $\lambda, \mu)$ is left unaffected when we recouple $|((l, P) j, S) \lambda, \mu\rangle_{d}$ into $|(l,(P S) J) \lambda, \mu\rangle_{d}$ states, since this procedure does not affect the labels λ, μ.

Using the Wigner $6-j$ symbol (Rotenberg et al 1959) the general formula becomes in our case
$|l,(P S) J ; \lambda, \mu\rangle_{d} \equiv \sum_{j}(-1)^{l+\lambda+\frac{3}{2}}[(2 j+1)(2 J+1)]^{1 / 2}\left\{\begin{array}{lll}l & 1 & j \\ \frac{1}{2} & \lambda & J\end{array}\right\}|(l P) j, S ; \lambda, \mu\rangle_{d}$
for all possible λ, μ. The sum contains only two terms: $j=\lambda \pm \frac{1}{2}$. As long as we keep all states occurring on the right-hand side of equation (26) the resulting basis set is still invariant with respect to $\boldsymbol{V}_{\mathrm{JT}}^{(3)}$ as well as diagonal with respect to $\boldsymbol{V}_{L S}^{(0)}$.

Table 2.

Using explicit formulae for the $6-j$ symbol we arrange (26) into

$$
\begin{align*}
|l,(P S) J ; \lambda, \mu\rangle & =\left|(l P) \lambda+\frac{1}{2}, S ; \lambda, \mu\right\rangle\left(\left(\frac{3}{2}-J\right) R-\left(J-\frac{1}{2}\right) \tilde{R}\right) \\
& +\left|(l P) \lambda-\frac{1}{2}, S ; \lambda, \mu\right\rangle\left(\left(\frac{3}{2}-J\right) \tilde{R}+\left(J-\frac{1}{2}\right) R\right) \tag{27}
\end{align*}
$$

where the (real) recoupling factors are defined by

$$
\begin{align*}
& R=\left(\frac{\left(l+\lambda+\frac{5}{2}\right)\left(\lambda-l+\frac{3}{2}\right)}{3(2 \lambda+1)}\right)^{1 / 2} \\
& \tilde{R}=-\left(\frac{\left(l-\lambda+\frac{3}{2}\right)\left(l+\lambda-\frac{1}{2}\right)}{3(2 \lambda+1)}\right)^{1 / 2} . \tag{28}
\end{align*}
$$

In general, we might expect to be forced to introduce two $|l,(P S) J ; \lambda, \mu\rangle_{d}$ states for each $|(l P) j, S ; \lambda, \mu\rangle_{d}$ state. But for those λ, μ which satisfy $\lambda=1 \pm\left(l+\frac{1}{2}\right)$ or $\lambda=l-\frac{3}{2}$ we have, trivially, a one-to-one correspondence as in $\left|0,(P S)_{\frac{1}{2}} ; \frac{1}{2}, \mu\right\rangle_{d}=\left|(0 P) 1, S ; \frac{1}{2}, \mu\right\rangle_{d}$. Yet, even for the remaining cases, we do not increase the number of states by recoupling.

This stems from the fact that the states $\left|(l P) \lambda+\frac{1}{2}, S ; \lambda, \mu\right\rangle_{d}$ and $\left|(l P) \lambda-\frac{1}{2}, S ; \lambda, \mu\right\rangle_{d}$ have the same symmetry under $\mu \leftrightarrow-\mu$. For example, $\left.\mid(1 P) 2, S ; \frac{3}{2}, \frac{3}{2}\right)_{\text {asym }}$ and $\left|(1 P) 1, S ; \frac{3}{2}, \frac{3}{2}\right\rangle_{\text {asym }}$ both occur for $[n=1]$ and hence together yield the pair $\left|1,(P S) J ; \frac{3}{2}, \frac{3}{2}\right\rangle_{\text {asym }},\left(J=\frac{1}{2}, \frac{3}{2}\right)$. Thus the change to new states which will diagonalise $V_{L S}^{(0)}$ does not lead to a bigger matrix. The new states can be expressed by a simple formula in terms of states which allow us to tackle the matrix elements $\boldsymbol{V}_{J T}^{(3)}$ as in the case without spin-orbit coupling.

The set of recoupled states appears in the right-hand side of table 2. Note that the $j=0$ states still do not couple to our set; this is because $j=0$ implies $\lambda=\mu=\frac{1}{2}$, a Γ_{6} state which is unrepresented in our set for odd n. But $j=0$ occurs only for odd n.

To separate the basis into two parts, one for $\Gamma_{6,7}$ and one for Γ_{8}, we would need to build up a set of states which are no longer a combination of only two terms like the $|\ldots \lambda, \mu\rangle_{d}$. The number of terms they contain grows like λ itself. This is of course plausible, since even for the non-spin case the two partners together with which $|j, m\rangle_{d}$ generates T_{1}, say, have the same property:

$$
\left.\begin{array}{c}
\sum_{M^{\prime}} i^{m^{\prime}} \Delta_{m^{\prime} m}^{(j)}\left|j, m^{\prime}\right\rangle_{d(j)} \tag{29}\\
\sum_{\mathcal{M}^{\prime}} \Delta_{m^{\prime} m}^{(j)}\left|j, m^{\prime}\right\rangle_{d(j+1)} \\
|j, m\rangle_{d}
\end{array}\right\} \quad \text { for fixed } j, m\left(j \geqslant 1, \llbracket m \rrbracket_{4}=0\right) \text { generate } T_{1}
$$

where $M^{\prime}=\left\{m^{\prime}\left|\left[m^{\prime}\right]_{2}=1,\left|m^{\prime}\right| \leqslant j\right\}\right.$. To construct similar states in the spin case for Γ_{k} ($k=6,7,8$) is not possible without including $3-\mathrm{jm}$ symbols in their definition in the same way as (29) includes the elements of the rotation matrices, $\Delta_{m}^{(j)}=d_{m}^{(j)}(\pi / 2)$ (given in Edmonds 1957).

6. Conclusions

We have shown that an $\mathrm{SO}(3)-\mathrm{SO}(2)$ labelling of the symmetry-adapted vibronic basis states necessitates a pseudoscalar form of the JT operator. This leads to an analytic expression for the general component of the basis. We have extended the method to systems which display spin-orbit coupling and treated both interactions on an equivalent footing. For a fixed phonon occupation number n, table 3 compares the number $h(n)$ of basis states in our invariant space to the number $g(n)=\frac{3}{2}(n+1)(n+2)$ of simple direct product states $|P\rangle[n] l\rangle$ as used, for instance, by Sakamoto (1980). For large n, one finds $h(n) \sim \frac{1}{8} g(n)$, and the same result holds for the case of included spin-orbit interaction. Our completed work (Borner 1986) shows that the matrix elements of the spherical tensor $\boldsymbol{V}_{J T}^{(3)}$ can be given in a compact closed form. The next stage in the process is to set up and diagonalise the interaction matrix. This will be reported on in a later paper.

Table 3.

n	0	1	2	3	4	5	6	7
$h(n)$	1	1	3	4	7	8	11	13
$g(n)$	3	9	18	30	45	63	84	108

Acknowledgments

One of the authors (HPB) is grateful to the Studienstiftung des deutschen Volkes for support. Many helpful suggestions grew out of discussions with Dr C Chancey.

Appendix 1

The following proof of equation (8) uses the properties of characters of symmetrised products of representations denoted by [] and it proceeds without calculating the required characters explicitly.

We denote the five classes of the cubic group O in standard notation by E, C_{3}, C_{2}, C_{4}, C_{2}^{\prime}. For operations $G_{b} \in C_{4}, C_{2}^{\prime}$, the only difference between characters of τ_{1} and τ_{2} is a reversed sign, i.e.

$$
\begin{equation*}
\chi^{\tau_{1}}\left(G_{b}\right)=-\chi^{\tau_{2}}\left(G_{b}\right) \quad \text { the same holds for } \alpha_{1}, \alpha_{2} \tag{A1.1}
\end{equation*}
$$

The quantity of interest is the character $\chi_{\text {sym }}\left(\tau_{1}^{n}\right)$ of the reducible representation $\tau_{1}^{n} \otimes I$ of the direct product group $\mathrm{O} \times \mathrm{S}_{n}$. Here S_{n} denotes the symmetric group in n dimensions. The subscript 'sym' refers to the identity irrep I of S_{n}, according to which the n-phonon system must transform. We need the decomposition of $\tau_{1}^{n} \otimes I$ into irreps of the octahedral group (similarly for τ_{2}) and use the general formula (see, for example, Elliott and Dawber, 1979, appendix 3.1):

$$
\begin{equation*}
\chi_{\mathrm{sym}}^{\tau_{1,2}^{n}}\left(G_{a}\right)=\frac{1}{n!} \sum_{P \in \mathbf{S}_{n}}\left(\prod_{k(P)}\left(\chi^{\tau_{1,2}}\left(G_{a}^{k}\right)\right)^{n_{k}}\right) \tag{A1.2}
\end{equation*}
$$

where the permutation P contains n_{k} cycles of length k so that $n=\Sigma k n_{k}$. To obtain the characters χ^{τ} of the powers $G_{a}^{k} \in \mathrm{O}$, we observe that, since the highest-order axis is fourfold, we only have to look at the characters $\chi^{\top}\left(G_{a}^{k}\right)$ for $k \leqslant 4$. They are given in table 4. For example, with $G \in C_{4}$ we have $G^{2} \in C_{2}$ and therefore $\chi\left(G^{2}\right)=\chi\left(C_{2}\right)=-1$. We deduce the following result:

$$
\begin{array}{ll}
\chi^{\tau_{1}}\left(G_{a}^{2 N}\right)=\chi^{\tau_{2}}\left(G_{a}^{2 N}\right) & \text { for all } G_{a} \in \mathrm{O} \\
\chi^{\tau_{1}}\left(G_{b}^{2 N+1}\right)=-\chi^{\tau_{2}}\left(G_{b}^{2 N+1}\right) & \text { for all } G_{b} \in C_{4} \cup C_{2}^{\prime} \subset \mathrm{O} \tag{A1.3}\\
\chi^{\tau_{1}}\left(G_{c}^{2 N+1}\right)=\chi^{\tau_{2}}\left(G_{c}^{2 N+1}\right) & \text { for all } G_{c} \in E \cup C_{3} \cup C_{2} \subset \mathrm{O} .
\end{array}
$$

We rewrite (A1.2), using a decomposition of n into n_{g} cycles of even lengths g and n_{u} cycles of odd lengths u :

$$
n=\sum_{k} k n_{k}=\sum_{g} g n_{g}+\sum_{u} u n_{u} .
$$

Table 4.

	E	C_{3}	C_{2}	C_{4}	C_{2}^{\prime}
$\chi^{T_{1,2}(G)}$	3	0	-1	$\pm 1 \dagger$	$\mp 1^{\dagger} \dagger$
$\chi^{T_{1,2}\left(G^{2}\right)}$	3	0	3	-1	3
$\chi^{\tau_{1,2}\left(G^{3}\right)}$	3	3	-1	$\pm 1^{\dagger}$	$\mp 1^{\dagger}$
$\chi^{\tau_{1.2}\left(G^{4}\right)}$	3	0	3	3	3

[^0]Hence the product Π in (A1.2) will become

$$
\begin{equation*}
\prod_{g(P) u(P)}\left(\chi^{\tau_{1,2}}\left(G_{a}^{g}\right)\right)^{n_{\varepsilon}}\left(\chi^{\tau_{1,2}}\left(G_{a}^{u}\right)\right)^{n_{u}} \tag{A1.4}
\end{equation*}
$$

Since n is even (odd) if and only if n_{u} is even (odd), (A1.3) shows that, for $G_{b} \in C_{4}$, C_{2}^{\prime},

$$
\begin{equation*}
\chi_{\mathrm{sym}}^{\tau_{1 \mathrm{~m}}^{\prime \prime}}\left(G_{b}\right)=(-1)^{n} \chi_{\mathrm{sym}}^{\tau_{2}^{n}}\left(G_{b}\right) \tag{A1.5}
\end{equation*}
$$

whereas for the other $G_{c} \in E, C_{3}, C_{2} \subset \mathrm{O}$ the two characters are identical.
Together with (A1.1) the formulae for the decomposition $\mathrm{O} \times \mathrm{S}_{n} \rightarrow \mathrm{O}$

$$
\begin{align*}
& \chi_{\text {sym }}^{\tau_{\mathrm{y}}^{n}}\left(G_{a}\right)=\sum_{\alpha} m_{\mathrm{sym}, \alpha}^{\tau_{12}^{n}} \chi^{(\alpha)}\left(G_{a}\right) \\
& m_{\mathrm{s} y \mathrm{in}, \alpha}^{\tau \eta}=\frac{1}{24} \sum_{G_{a} \in \mathrm{O}} \chi^{(\alpha)}\left(G_{a}\right) \chi_{\mathrm{s} y . \mathrm{in}}^{\tau_{1}^{n}}\left(G_{a}\right) \tag{A1.6}
\end{align*}
$$

yield the desired result:

$$
\begin{equation*}
\left[\tau_{1}^{2 N}\right]=\left[\tau_{2}^{2 N}\right] \quad\left[\tau_{1}^{2 N+1}\right]=\pi\left[\tau_{2}^{2 N+1}\right] \tag{A1.7}
\end{equation*}
$$

where π denotes an interchange of the irrep subscripts 1,2 . (For example, for $n=2 N+1=3,\left[\tau_{2}^{3}\right]=\alpha_{1} \oplus \tau_{1} \oplus 2 \tau_{2}$ and $\left[\tau_{1}^{3}\right]=\alpha_{2} \oplus \tau_{2} \oplus 2 \tau_{1}=\pi\left[\tau_{2}^{3}\right]$.) Multiplying (A1.7) by the electronic irrep T_{1} finally gives (A1.8).

It should be obvious that other groups than O allow an identical proof, if their character table shows the required properties ((A1.1), etc).

Appendix 2. The connection between $|j, m\rangle_{d}$ and $\left|j, T_{1,2}\right\rangle$ states

In this appendix we wish to establish a relationship between two differently labelled subsets of the set of basis functions generating the irrep $D^{(j)}$ of $\mathrm{SO}(3)$. Two group chains are used to label the members of these subsets:

$$
\begin{aligned}
& \mathrm{SO}(3) \supset \mathrm{SO}(2) \supset C_{1} \\
& \mathrm{SO}(3) \supset \mathrm{O} \supset \mathrm{X} \supset C_{1}
\end{aligned}
$$

(C_{1} defines an axis). In the first case, the two 'usual' labels (j, m) are sufficient, they remove all the degeneracy in the label j. For the second chain this is not the case and in general an irrep $\Gamma=T_{1(2)}$ will occur several times in the reduction of $D^{(j)}$. Hence either we have to account for this multiplicity or we have to introduce another label belonging to an irrep of a group X such that the chain $\mathrm{O} \supset \mathrm{X} \supset C_{1}$ provides a unique labelling (for example, $\mathrm{X}=D_{3}$). We shall adhere to the former alternative. We write the spherical harmonics $\langle\theta, \varphi \mid j, m\rangle=Y_{m}^{(j)}(\theta, \varphi)$ in a form which supplies us with sufficient information:

$$
\begin{equation*}
Y_{m}^{(i)}(\theta, \varphi)=N(j,|m|) P_{\mid m}^{j}(\zeta) \exp (\mathrm{i} m \varphi) \quad \zeta=\cos \theta \quad-j \leqslant m \leqslant j \tag{A2.1}
\end{equation*}
$$

$N(j,|m|)$ is the normalisation constant and $P_{|m|}^{j}$ are the associated Legendre polynomials. In our case, m even, the various definitions of the $Y_{|m|}^{(j)}$ are identical (see, for example, Butkov 1968). Having in mind that we are looking for cubic properties
of $|j, m\rangle_{d}$ states, we convert this into cartesian coordinates using

$$
\begin{align*}
& z / r=\zeta \\
& (x \pm \mathrm{i} y) / r=\left(1-\zeta^{2}\right)^{1 / 2} \exp (\pm \mathrm{i} \varphi) \tag{A2.2}
\end{align*}
$$

Thus we obtain for the combinations $|m\rangle \pm|-m\rangle$:

$$
\begin{equation*}
\left\langle\boldsymbol{r}(|j, m\rangle \pm|j,-m\rangle)=\frac{\boldsymbol{N}(j, m)}{r^{j}} A_{ \pm}^{(m)} p^{(j-m)}(z) \quad m=2 k \geqslant 0\right. \tag{A2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{ \pm}^{(m)}=(x+\mathrm{i} y)^{m} \pm(x-\mathrm{i} y)^{m} \\
& \begin{aligned}
p^{(j-m)}(z) & = \begin{cases}\tilde{p}^{((j-m) / 2)}\left(z^{2}\right) & \text { for } j-m \text { even } \Leftrightarrow j \text { even } \\
z \cdot \tilde{p}^{((j-m) / 2)}\left(z^{2}\right) & \text { for } j-m \text { odd } \Leftrightarrow j \text { odd }\end{cases} \\
& =r^{j} \cdot\left(\frac{\delta}{\delta z}\right)^{j+m}\left(r^{2}-z^{2}\right)^{j} .
\end{aligned}
\end{aligned}
$$

We shall omit the cubic scalar $N(j, m) / r^{j}$ in the following arguments. The real basis functions (A2.3) thus comprise the real factor $A_{ \pm}^{(m)}(x, y)$ and the polynomial $p^{(j-m)}$ of degree $j-m$ in z of definite j-dependent parity. We shall find a suitable expression for $A_{ \pm}^{(m)}$ by defining

$$
\begin{array}{ll}
u_{1}^{(E)} \equiv 3 z^{2}-r^{2} & u_{2}^{(E)} \equiv x^{2}-y^{2} \\
v_{3}^{\left(T_{2}\right)} \equiv x y & w_{3}^{\left(T_{2}\right)} \equiv z . \tag{A2.4}
\end{array}
$$

$u_{1,2}^{(E)}$ span the irrep E, whereas $v_{3}^{\left(T_{1}\right)}, w_{3}^{\left(T_{2}\right)}$ are the third partners of the usual bases of $T_{1,2}$.

Algebraic manipulation then yields the following result ($m \equiv 2 k$):
$A_{+}^{(m)}=\left\{\begin{array}{c}L_{a}\left(u^{k}, u^{k-2} v^{2}, \ldots, v^{k}\right) \\ u_{2} L_{b}\left(u^{k-1}, u^{k-3} v^{2}, \ldots, v^{k-1}\right)\end{array}\right.$
for k even $\Leftrightarrow \llbracket m \rrbracket_{4}=0$
for k odd $\Leftrightarrow \llbracket m \rrbracket_{4}=2$
$A_{-}^{(m)}=\left\{\begin{array}{c}u_{2} v_{3} L_{c}\left(u^{k-2}, u^{k-4} v^{2}, \ldots, v^{k-2}\right) \\ v_{3} L_{d}\left(u^{k-1}, u^{k-3} v^{2}, \ldots, v^{k-1}\right)\end{array}\right.$
for k even $\Leftrightarrow \llbracket m \rrbracket_{4}=0$
for k odd $\Leftrightarrow \llbracket m \rrbracket_{4}=2$
where the L_{i} are linear functions of their arguments ($i=i(k)=a, \ldots, d$). The decomposition (A2.3) and (A2.5) of the combinations $|j, m\rangle_{d}$ can be seen to prove (15) directly since, first, products of the bases (A2.4) have particularly simple transformation properties (\approx) under O (see tables in Koster et al 1969):

$$
\begin{align*}
& u_{1}^{(E)} w_{3}^{\left(T_{1}\right)} \simeq u_{2}^{(E)} v_{3}^{\left(T_{2}\right)} \simeq w_{3}^{\left(T_{1}\right)} \\
& u_{1}^{(E)} v_{3}^{\left(T_{2}\right)} \simeq u_{2}^{(E)} w_{3}^{\left(T_{1}\right)} \simeq v_{3}^{\left(T_{2}\right)} . \tag{A2.6}
\end{align*}
$$

Second, the bases $(x, y, z)^{t}$ and $\left(x . P\left(x^{2}\right), y . P\left(y^{2}\right), z . P\left(z^{2}\right)\right)^{t}$, where P is some polynomial, generate the same matrix irrep of T_{1}; the same holds for $(y z, x z, x y)^{t}$ in the generation of T_{2}. Table 5 gives those independent $T_{1,2}$ basis functions which resolve the multiplicity in the label j (always the third partner in the $T_{1,2}$-generating triplet). Thus, for $j=5$, for example, we have two irreps $T_{1}^{(A)}, T_{1}^{(B)}$ in the decomposition of $D^{(5)}$, and their respective bases contain $\left|j, T_{1}^{(A)}, z\right\rangle=|5,0\rangle$ and $\left|j, T_{1}^{(B)}, z\right\rangle=|5,4\rangle+|5,-4\rangle$ as the third (z) partner. To conclude, the symmetry determining factors in $|j, m\rangle_{d}$ are thus $x y, z$, and $\left(x^{2}-y^{2}\right)$. Table 5 orders these bases with rising j.

Table 5.

j	Γ	$\|(j) m\rangle_{d}$	Symmetry \dagger
1	T_{1}	$\|0\rangle$	z
2	T_{2}	$\|2\rangle-\|-2\rangle$	$x y$
3	T_{1}	$\|0\rangle$	$z \cdot \tilde{p}\left(z^{2}\right)$
	T_{2}	$\|2\rangle+\|-2\rangle$	$\left(x^{2}-y^{2}\right) x y$
4	T_{1}	$\|4\rangle-\|-4\rangle$	$\left(x^{2}-y^{2}\right) x y$
	T_{2}	$\|2\rangle-\|-2\rangle$	$x y \cdot \tilde{p}\left(z^{2}\right)$
5	$T_{1}^{(1)}$	$\|4\rangle+\|-4\rangle$	$g\left(^{*}\right) z$
	$T_{1}^{(2)}$	$\|0\rangle$	$z \cdot \tilde{p}\left(z^{2}\right)$
	T_{2}	$\|2\rangle+\|-2\rangle$	$\left(x^{2}-y^{2}\right) z \cdot \tilde{p}\left(z^{2}\right)$
6	T_{1}	$\|4\rangle-\|-4\rangle$	$\left(x^{2}-y^{2}\right) x y \cdot \tilde{p}\left(z^{2}\right)$
	$T_{2}^{(1)}$	$\|6\rangle-\|-6\rangle$	$g\left(^{*}\right) x y$
	$T_{2}^{(2)}$	$\|2\rangle-\|-2\rangle$	$x y \cdot \tilde{p}\left(z^{2}\right)$
7	$T_{1}^{(1)}$	$\|4\rangle+\|-4\rangle$	$g\left(^{*}\right) z \cdot \tilde{p}\left(z^{2}\right)$
	$T_{1}^{(2)}$	$\|0\rangle$	$z \cdot \tilde{p}\left(z^{2}\right)$
	$T_{2}^{(1)}$	$\|6\rangle+\|-6\rangle$	$g\left({ }^{*}\right)\left(x^{2}-y^{2}\right) z$
	$T_{2}^{(2)}$	$\|2\rangle+\|-2\rangle$	$\left(x^{2}-y^{2}\right) z \cdot \tilde{p}\left(z^{2}\right)$

\dagger Here $g\left(^{*}\right)$ is some polynomial in $\left(x^{2}-y^{2}\right)^{2}$ and $(x y)^{2}$.

References

Bersuker I B 1984 The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry (New York: Plenum)
Borner H P 1986 MSc Thesis University of Oxford
Butkov E 1968 Mathematical Physics (New York: Addison-Wesley)
Butler P M 1981 Point Group Symmetry Applications (New York: Plenum)
Caner M and Englman R 1966 J. Chem. Phys. 444054
Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press)
Elliott J P and Dawber P G 1979 Symmetry in Physics (London: Macmillan)
Englman R 1972 The Jahn-Teller Effect in Molecules and Crystals (New York: Wiley)
Englman R and Caner M 1970 J. Phys. Soc. Japan 29306
Judd B R 1974 Can. J. Phys. 52999
Koster G F, Dimmock J O, Wheeler R G and Statz H 1969 Properties of the 32 Point Groups (Cambridge, MA: MIT Press)
Lea K R, Leask M J M and Wolf W P 1962 J. Phys. Chem. Solids 231351
Moffitt W and Thorson W 1957 Phys. Rev. 1081251
O'Brien M C M 1969 Phys. Rev. 187407
—_ 1971 J. Phys. C: Solid State Phys. 42524
Rotenberg M, Bivins R, Metropolis N and Wooten J K Jr 1959 The 3j and 6j symbols (Cambridge, MA: MIT Press)
Sakamoto N 1980 J. Phys. Soc. Japan 48527
Sakamoto N and Maramatsu S 1978 Phys. Rev. B 17868

[^0]: \dagger The upper sign refers to τ_{1} in each case.

